宇航学报 ›› 2011, Vol. 32 ›› Issue (4): 734-740.doi: 10.3873/j.issn.1000-1328.2011.04.005

• 制导、导航与控制 • 上一篇    下一篇

BTT导弹的协调式分散鲁棒H∞控制器设计

张颖昕1, 董朝阳2, 王青1, 陈宇1   

  1. 1. 北京航空航天大学 自动化科学与电气工程学院,北京 100191;
    2. 北京航空航天大学 航空科学与工程学院, 北京 100191
  • 出版日期:2011-04-15 发布日期:2011-04-26

Decentralized Robust H∞ Controller Design for Bank\|to\|Turn Missile
 with Coordinate Loop

ZHANG Ying   

  1. 1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
     2. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Online:2011-04-15 Published:2011-04-26

摘要: BTT(倾斜转弯)导弹在飞行过程中常处于大迎角和快速滚动状态,这时通道间的运动学耦合为非线性形式且不能忽略。针对这一问题,提出了一种基于分散控制思想的协调式鲁棒H∞控制器设计方法。根据期望动态性能,为每个子系统设计高品质参考模型。引入协调支路有效消除通道间的主要耦合因素,并假设未补偿的耦合满足二次约束。基于鲁棒控制理论,在耦合项满足上述约束的前提下,设计控制器使得系统渐近稳定,同时从参考输入到跟踪误差传递函数的H∞范数最小。推导并得出了鲁棒控制器存在的充分条件,并将其归结为一个有限维线性矩阵不等式的优化问题。对BTT导弹的仿真结果表明了该控制方法的有效性。

关键词: BTT导弹, 鲁棒H∞控制, 分散控制, 线性矩阵不等式

Abstract: Because of the high angle of attack and rapid roll movement of bank\|to\|turn (BTT) missile, the nonlinear kinematic coupling between three channels can not be ignored. For this problem, an coordinated robust H∞ controller based on decentralized control theory is proposed. According to the expected dynamic characteristics of the system, a reference model is designed for each subsystem. Coordinate loops are induced to slake the main nonlinear coupling, and the uncompensated coupling is assumed to satisfy a quadratic constraint. Based on the robust control theory and the precondition that the coupling is quadratic bounded, controllers are designed to guarantee the asymptotic stability of the overall system, and the H∞ norm of the generalized system is minimized. The sufficient condition of the controller’s existence is generalized to the optimization of a linear matrix inequality. Simulation shows the validity of the proposed control scheme.

Key words: BTT missile, Robust H∞ control, Decentralized control, Linear matrix inequality

中图分类号: