宇航学报 ›› 2011, Vol. 32 ›› Issue (5): 1184-1189.doi: 10.3873/j.issn.1000-1328.2011.05.032

• 电子信息 • 上一篇    下一篇

一种结合证据理论和Vague集信息融合方法

辛玉林, 安成锦, 徐世友, 陈曾平   

  1. 国防科技大学ATR国防科技重点实验室, 长沙 410073
  • 收稿日期:2010-04-15 修回日期:2010-10-11 出版日期:2011-05-15 发布日期:2011-06-14
  • 作者简介:10001328(2011)05118406
  • 基金资助:
    收稿日期:20100415;
    \ 修回日期:20101011

A New Algorithm of Information Fusion Combined Evidential
Theory and Vague Set

XIN Yu   

  1. ATR Key Lab., NUDT, Changsha 410073, China
  • Received:2010-04-15 Revised:2010-10-11 Online:2011-05-15 Published:2011-06-14

摘要: 针对强冲突下证据理论结果与直觉相悖及Vague集数值获取主观性强等问题,提出一种结合证据理论和Vague集的新方法。该方法将获取证据理论的信度函数转化为Vague集区间值形式,通过求解与理想点的距离进行决策。在进行信度函数到Vague集区间值的转化时,提出一种基于聚焦度递减顺次分配的思想,经分析得出该思想与人的主观思想是一致的,最后举例阐明整个算法过程。

关键词: 信息融合, DS证据理论, VaGue集, 信度函数, 冲突

Abstract: DS evidential theory may give improper results in strong conflict evidence, and the value acquisition process for Vague set is always highly subjective, thus constraining their use in information fusion application. To solve these problems, a new algorithm based on DS evidential theory combined with Vague set is presented. First, the confidence function obtained within DS evidential theory framework is transformed into the Vague set formats, in which a new thought based on focused degree descending assignment is put forward. Then, optimal dots are computed within Vague set framework. Finally, the fusion result is obtained by comparing distances from optimal dots. Simulation results show the availability of this new information fusion algorithm.

Key words: Information fusion, DS evidential theory, VaGue set, Belief function, Confidence conflict

中图分类号: