宇航学报 ›› 2014, Vol. 35 ›› Issue (10): 1141-1149.doi: 10.3873/j.issn.1000-1328.2014.10.006

• 制导、导航与控制 • 上一篇    下一篇

带末端攻击角约束连续有限时间稳定制导律

刁兆师,单家元   

  1. 北京理工大学宇航学院飞行器动力学与控制教育部重点实验室,北京100081
  • 收稿日期:2013-08-26 修回日期:2013-11-19 出版日期:2014-10-15 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金(61203064)

Continuous Finite Time Stabilization Guidance Law for Terminal Impact Angle Constrained Flight Trajectory

DIAO Zhao shi, SHAN Jia yuan   

  1. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education,Scholl of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2013-08-26 Revised:2013-11-19 Online:2014-10-15 Published:2014-10-25

摘要:

针对制导武器末端攻击角约束与末端弹道尽可能平直的要求,应用有限时间控制方法,设计了具有末端攻击角约束的连续有限时间稳定制导律,使闭环制导系统在有限时间内视线角速度收敛到零和视线角收敛到期望值。通过非线性控制系统的有限时间稳定齐次性理论对该制导律进行了分析,证明了闭环制导系统的视线角速度和视线角全局有限时间稳定特性,并基于有限时间Lyapunov稳定性理论给出了闭环制导系统有限停息时间的表达式。在实例应用仿真中,比较了该制导律与最优制导律的制导性能,检验了该制导律在不同作战任务下的制导效果。仿真结果证实了该制导律的有效性和鲁棒性。

关键词: 制导律, 攻击角约束, 有限时间稳定, 连续非光滑

Abstract:

Aiming at the demands for terminal impact angle constraint and shaped terminal trajectory as straight as possible for some guided weapons, a continuous finite-time stabilization guidance law with terminal impact angle constrained trajectory is designed using the finite-time control technique. This guidance law ensures that the line-of-sight rate converges to zero and the line-of-sight angle converges to the desired angle within a finite time. This law is analyzed by utilizing the finite-time stabilization homogeneous theory of nonlinear control systems, thus confirming the global finite-time convergence of the line-of-sight rate and angle in the closed guidance system. Based on the finite-time Lyapunov stability theory, the expression of convergence time is yielded for the closed guidance system. In simulations of an application example, the guidance performance of the proposed law is compared with optimal guidance law, and the guidance effect of the proposed design on different operation tasks is verified. Simulation results have demonstrated that the proposed guidance law is effective and robust.

Key words: Guidance law, Impact angle constraint, Finite-time stabilization, Continuity and non-smoothness

中图分类号: