宇航学报 ›› 2016, Vol. 37 ›› Issue (10): 1185-1192.doi: 10.3873/j.issn.1000-1328.2016.10.005

• 飞行器设计与力学 • 上一篇    下一篇

翼身组合弹箭马格努斯效应数值模拟研究

石磊,刘周,杨云军,周伟江   

  1. 中国航天空气动力技术研究院,北京100074
  • 收稿日期:2016-05-09 修回日期:2016-06-27 出版日期:2016-10-15 发布日期:2016-10-25
  • 基金资助:

    国家自然科学基金(11372040,11472258)

A Numerical Study on Magnus Effect for a High Speed Spinning Projectile

SHI Lei, LIU Zhou, YANG Yun jun, ZHOU Wei jiang   

  1. China Academy of Aerospace Aerodynamics, Beijing 100074, China
  • Received:2016-05-09 Revised:2016-06-27 Online:2016-10-15 Published:2016-10-25

摘要:

为研究翼身组合弹箭马格努斯特性及产生机理,采用完全时间相关的非定常N-S方程,对带翼弹箭在高速旋转状态下的绕流场进行数值模拟,得到马格努斯力和力矩系数随攻角变化的规律,所得结果与阿诺德工程发展中心(AEDC)试验及陆军研究实验室(ARL)计算结果吻合很好。分析表明压力差是产生马格努斯力的主因,切应力产生的马格努斯力只占压力产生马格努斯力的1%;弹身马格努斯力除α40°外皆为负,舵马格努斯力始终为正;α5°~30°每个舵的马格努斯力不是正弦变化规律,但合力呈现正弦变化规律。

关键词: 流体力学, 翼身组合, 旋转弹箭, 马格努斯效应, 数值模拟

Abstract:

Navier-Stokes equations are solved with time dependent method to simulate the flow field around a spinning projectile. The computational results have a good agreement with the Arnold engineering and development center(AEDC) experiment data and army research laboratory(ARL). Asymmetric distortion of circumferential surface pressure and shear stress are the fundamental reasons for the Magnus effect. The shear stress contribution to the Magnus force is only 1% of the surface pressure component. It is indicated that the body Magnus force is negative except α40° and rudder Magnus force is always positive. The total Magnus force of four rudders shows sinusoidal distribution during α5°~30°.

Key words: Fluid dynamics, Wing-body combination, Spinning projectile, Magnus effect, Numerical simulation

中图分类号: