宇航学报 ›› 2017, Vol. 38 ›› Issue (7): 686-693.doi: 10.3873/j.issn.1000-1328.2017.07.003

• 飞行器设计与力学 • 上一篇    下一篇

脉冲推力最优轨迹的Hamilton边值问题

沈红新   

  1. 西安卫星测控中心宇航动力学国家重点实验室,西安 710043
  • 收稿日期:2016-10-18 修回日期:2017-05-15 出版日期:2017-07-15 发布日期:2017-07-25

Hamilton Boundary Value Problem for Optimal Impulsive Trajectory

SHEN Hong xin   

  1. State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043, China
  • Received:2016-10-18 Revised:2017-05-15 Online:2017-07-15 Published:2017-07-25

摘要:

针对大推力航天器的Hamilton边值问题(HBVP),提出一组基于变分法的通用方程,其中内点和其它端点(包括始、末端点)可以满足统一的方程形式,由此反映了更本质的边值条件解析结构。具体问题的最优性必要条件均可以从本文给出的通用方程中较方便地推出,避免了以往构造边值问题复杂繁琐的困难。仿真结果表明,本文方法可以保证有效、快速地获得大推力航天器的最优飞行路径。

关键词: 边值问题, 最优性;内点;脉冲轨道

Abstract:

For a spacecraft with high thrust, a general equations based on variational calculus for formulating the Hamilton boundary value problem (HBVP) is proposed, where the optimality conditions on interior points and other general boundary points (inclucling initial and final points) are in the same manners, so that our equations tend to reveal the more intrinsic analytic structure of HBVP. The detailed optimality conditions can be determined conveniently according to the general equations; therefore, the tedious task of formulating HBVP is precluded. Simulations show that the method proposed in this paper could ensure obtaining the optimal flight path of the high-thrust spacecraft effectively and efficiently.

Key words: Boundary value problem, Optimality, Interior point, Impulsive trajectory

中图分类号: