宇航学报 ›› 2018, Vol. 39 ›› Issue (12): 1381-1390.doi: 10.3873/j.issn.1000-1328.2018.12.009

• 制导、导航、控制与电子 • 上一篇    下一篇

基于激光测距的月球探测重载六足机器人自主避障控制

刘宇飞,丁亮,高海波,刘振,胡艳明,何玉庆,邓宗全   

  1. 1. 哈尔滨工业大学机器人技术与系统国家重点实验室,哈尔滨 150080;
    2. 中国科学院沈阳自动化研究所机器人学重点实验室,沈阳 110016
  • 收稿日期:2018-04-10 修回日期:2018-07-08 出版日期:2018-12-15 发布日期:2018-12-25
  • 基金资助:

    国家自然科学基金(51575120);“111”创新引智计划(B07018);自然基金委创新研究群体项目(51521003);哈尔滨工业大学重大重点科技创新培育支持计划(HIT.MKSTISP.2016 05);哈尔滨市杰出青年人才项目(2014RFYXJ001)

Autonomous Obstacle Avoidance Control of Heavy Buty Hexapod Robot for Lunar Exploration Based on Laser Ranging

LIU Yu fei, DING Liang, GAO Hai bo, LIU Zhen, HU Yan ming, HE Yu qing, DENG Zong quan   

  1. 1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China;
    2. Robotics Laboratory, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2018-04-10 Revised:2018-07-08 Online:2018-12-15 Published:2018-12-25

摘要:

月面未知环境下具有高承载力的六足移动机器人是月球探测中不可或缺的装备。六足机器人虽然可以借助足地接触信息和姿态信息在不平坦路面行走,在遇到较小障碍物时可以做出适当的反射动作,但当遇到无法逾越的障碍物时,基于视觉信息实现腿式机器人避障运动是非常重要的。针对电驱动六边形对称分布的六足机器人,基于激光测距仪的信息实现了模拟月壤地面的地形建模,提出基于虚拟机体模型的自主避障策略,获得最优可行方向和运动最短距离,规划了实时避障的机体和足端运动轨迹。实验结果表明,六足机器人可以实时、准确地跟踪避障策略得到实时偏航角度,实现了机器人在未知环境下的自主避障运动,为月球探测重载足式机器人研究奠定了基础。

关键词: 六足机器人, 月球探测, 地形建模, 避障

Abstract:

 The hexapod mobile robot, which can bear the heavy load and traverse in the unknown environment of the lunar surface, is a necessary device for lunar exploration. Although the hexapod robot walking over a rugged terrain can be accomplished by employing the ground contact and attitude information, and can make a reflex action when encountering the small obstacles, however, the obstacle avoidance based on visual information is an important issue in the field of the legged locomotion when faced with the insurmountable obstacles. For an electrically-driven and radially-symmetrical hexapod robot, the terrain modeling for the lunar surface is based on the information from the laser range finder. In this paper, a virtual trunk body model is presented to achieve the autonomous obstacle avoidance strategy in the unknown environment, and the real-time optimal feasible directions and minimum distance are acquired to avoid the obstacles. The path trajectory of the trunk body and foot trajectories are planned to walk toward the feasible direction. The experimental result shows that the hexapod robot can track the yaw angle and in real time accurately from the obstacle avoidance method to achieve the obstacle avoidance autonomously in the unknown environment. The key techniques will lay a foundation for the research of the heavy-duty multi-legged robots for lunar exploration.

Key words:  Hexapod robot, Lunar exploration, Terrain modeling, Obstacle avoidance

中图分类号: