宇航学报 ›› 2020, Vol. 41 ›› Issue (3): 262-269.doi: 10.3873/j.issn.1000-1328.2020.03.002

• 飞行器设计与力学 • 上一篇    下一篇

UltraFlex太阳翼有序展开动力学建模与分析

辛鹏飞,刘志超,荣吉利,刘铖,吴志培,刘宾   

  1. 1. 北京理工大学宇航学院,北京 100081;2. 北京空间飞行器总体设计部,北京 100094; 3. 空间物理重点实验室,北京 100076
  • 收稿日期:2018-12-19 修回日期:2019-01-28 出版日期:2020-03-15 发布日期:2020-03-25
  • 基金资助:
    民用航天预先研究项目(指南编号D020205)

Modeling and Analysis of Deployment Dynamics for UltraFlex Solar Array

XIN Peng fei, LIU Zhi chao, RONG Ji li, LIU Cheng, WU Zhi pei, LIU Bin   

  1. 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China;3. Science and Technology on Space Physics Laboratory, Beijing 100076, China
  • Received:2018-12-19 Revised:2019-01-28 Online:2020-03-15 Published:2020-03-25

摘要: 针对刚柔耦合的圆形薄膜UltraFlex太阳翼结构动力学建模与分析困难、微重力下薄膜运动复杂和展开精度要求高的问题,搭建了UltraFlex展开动力学数值分析模型,分析了扭簧和绳索驱动下UltraFlex的有序展开动力学特性。基于绝对坐标方法建立包含柔性附件和柔性薄膜的UltraFlex动力学模型,采用两步检测算法处理薄膜间的复杂接触碰撞问题,利用扭簧逐步释放扭矩的方法驱动结构有序展开,通过控制绳索释放速率的方法完成移动箱板的转动规划和限位跟踪,提高展开位置精度。将该展开驱动策略运用到NASA实际样机尺寸的UltraFlex分析模型中,仿真结果表明该展开策略能够使得UltraFlex结构高精度、有序、稳定地展开;绳索始终处于张紧状态,最大拉力为62.5N;薄膜展开过程复杂,重复出现张紧、回弹的现象,最终趋于稳定。

关键词: UltraFlex太阳翼, 刚柔耦合, 展开动力学, 接触碰撞

Abstract: Circular UltraFlex solar array has characteristics of rigid-flexible coupling, difficulty in dynamics modeling,large overall movement of thin membrane without gravity and high deployment precision. In response, a numerical dynamics model of a typical UltraFlex structure is established in this paper to analyze the well-ordered deployment dynamics features by the driving of the torsion spring and the rope. An absolute coordinate-based method is used to model the flexible components and thin membrane in the structure. A two-step detection method is employed to deal with the complex contact-collision problem between thin membrane. UltraFlex is driven by using the gradually released torsion spring and rope. The trajectory of the pivot panel is planned and tracked by designing the changing rate of the rope length to improve the deployment positioning accuracy. The above driving strategy is then applied to an UltraFlex numerical model based on the NASA prototype. The numerical simulations have demonstrated that the UltraFlex structure can be well-ordered and accurately deployed; the rope is always in tension and provides 62.5 N maximal tension during the deployment; tension/rebound of the thin membrane occurs repeatedly and eventually the whole structure stabilizes.

Key words: UltraFlex solar array, Rigid-flexible coupling, Deployment dynamics, Contact-collision

中图分类号: