宇航学报 ›› 2021, Vol. 42 ›› Issue (10): 1271-1282.doi: 10.3873/j.issn.1000-1328.2021.10.008

• 制导、导航、控制与电子 • 上一篇    下一篇

大尺度弱纹理场景下多源信息融合SLAM算法

朱叶青,金瑞,赵良玉   

  1. 北京理工大学宇航学院,北京 100081
  • 收稿日期:2020-12-14 修回日期:2021-05-01 出版日期:2021-10-15 发布日期:2021-10-15
  • 基金资助:
    国家自然科学基金(12072027,11532002)

Multi source Information Fusion SLAM Algorithm in Large scale Weak Texture Scenes

ZHU Ye qing, JIN Rui, ZHAO Liang yu   

  1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2020-12-14 Revised:2021-05-01 Online:2021-10-15 Published:2021-10-15

摘要: 为实现自主机器人大尺度弱纹理场景下局部精准和全局无漂移的状态估计,提出一种视觉惯性与全球导航卫星系统多源信息融合的同时定位与地图构建算法。首先,通过在局部状态估计中加入线特征来更直观表示环境的几何结构信息,有效提升了弱纹理场景中关键帧之间相对位姿估计的准确性;其次,通过引入线性误差表示,将线性特征表示为直线端点上的线性约束,从而将线特征整合到基于特征点算法的线性表示中,有效改善算法在重复线特征场景下的鲁棒性。最后,使用多源信息融合算法,融合视觉惯性与GNSS测量信息实现了局部精确和全局无漂移的位姿估计,有效解决了大尺度弱纹理场景下的精准状态估计问题。多个公共数据集的评估结果表明,所提出算法的鲁棒性更强、定位准确度更高。


关键词: 同时定位与地图构建, 视觉惯性系统, 多源信息融合, 全球导航卫星系统, 大尺度弱纹理场景

Abstract: In order to obtain the local accurate and global drift free state estimation of an autonomous robot in the large scale weak texture scenes, a SLAM system based on fusion of visual inertial and global navigation satellite system (GNSS) is proposed. Firstly, by adding the line features to the local state estimation to represent the geometric structure information of the environment, the accuracy of the relative pose estimation between key frames in the weak texture scene is effectively improved. Secondly, by introducing a linear error representation, the linear feature is represented as a linear constraint on the end of the line, so the line feature is integrated into the linear representation based on the feature point algorithm, which effectively improves the robustness of the algorithm in the scene of the repeated line features. Finally, the multi source information fusion algorithm is used to fuse the visual inertial and GNSS measurement information to achieve the local accurate and global drift free pose estimation, which effectively solves the problem of accurate state estimation in the large scale weak texture scene. The evaluation results of several common datasets show that the proposed algorithm has stronger robustness and higher positioning accuracy.


Key words: Simultaneous localization and mapping (SLAM), Visual inertial system, Multi source information fusion, Global navigation satellite system, Large scale weak texture scenes

中图分类号: