宇航学报 ›› 2013, Vol. 34 ›› Issue (7): 909-916.doi: 10.3873/j.issn.1000-1328.2013.07.004

• 飞行器设计与力学 • 上一篇    下一篇

解析求解非线性相对运动的最优重构问题

曹静,袁建平,罗建军   

  1. 西北工业大学航天飞行动力学技术重点实验室,西安 710072
  • 收稿日期:2012-08-29 修回日期:2013-01-08 出版日期:2013-07-15 发布日期:2013-07-25
  • 基金资助:

    国家自然科学基金(11072194);航天飞行动力学技术重点实验室开放基金(2012afdl021)

Analytical Solution of Optimal Reconfiguration for Nonlinear Relative Motion

CAO Jing,  YUAN Jian ping,  LUO Jian jun   

  1. National Key Laboratory of Aerospace Flight Dynamics,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2012-08-29 Revised:2013-01-08 Online:2013-07-15 Published:2013-07-25

摘要:

椭圆轨道相对运动模型的线性化导致其在大尺度相对运动应用中精度不能满足需求。针对任意椭圆轨道上的大尺度航天器编队最优重构问题,提出一种基于椭圆轨道非线性相对运动模型的近似解析求解方法。首先通过变分法建立了非线性最优重构问题的数学模型;然后采用摄动法,以偏近点角为积分变量求得了不含特殊积分的解析开环最优控制,有效地避免了真近点角域下最优控制解所含有的特殊积分。仿真验证了所求最优控制的有效性和优越性,结果表明在相对运动尺度较大时,相比基于椭圆轨道线性化模型的最优控制,在燃耗保持相近的情况下,所求非线性控制有效地降低了重构误差。

关键词: 航天器编队飞行, 椭圆轨道, 最优重构, 非线性相对运动模型, 摄动法, 近似解析解

Abstract:

Linearization of relative motion model applied to large scale relative motion in elliptical orbit leads to low accuracy that can’t meet mission requirement. An approximate analytical approach based on nonlinear relative motion model is proposed for solving large scale fuel optimal reconfiguration of spacecraft formation flying on arbitrary elliptical orbits. Firstly, the variational method is used to establish the mathematical model of the nonlinear optimal reconfiguration problem. Then an analytical open loop optimal control law without special integrals is derived by using the perturbation method, taking the eccentric anomaly as the integral variable to avoid the special integrals under true anomaly domain. Simulations are carried out to verify effectiveness and advantage of the analytical open loop optimal control based on nonlinear model. Results show that when the relative motion scale is larger, reconstruction errors of optimal control based on nonlinear relative motion model is decreased by 2 to 3 orders of magnitude while fuel consumption is approximately close compared with that based on linear relative motion model.

Key words: Spacecraft formation flying, Elliptical orbit, Optimal reconfiguration, Nonlinear relative motion model, Perturbation method, Approximate analytical solution

中图分类号: