宇航学报 ›› 2021, Vol. 42 ›› Issue (11): 1377-1384.doi: 10.3873/j.issn.1000-1328.2021.11.004

• 飞行器设计与力学 • 上一篇    下一篇

一种低轨星座高精度相位保持方法

刘奇,向开恒,赵书阁,贺泉,李小玉,张楠   

  1. 1. 航天科工空间工程发展有限公司,北京 100854;2. 中国航天科工集团有限公司空间工程总体部,北京 100854
  • 收稿日期:2021-02-01 修回日期:2021-03-22 出版日期:2021-11-15 发布日期:2021-11-15

A High Precision Phase Keeping Method for LEO Constellation

LIU Qi, XIANG Kai heng, ZHAO Shu ge, HE Quan, LI Xiao yu, ZHANG Nan   

  1. 1. CASIC Space Engineering Development Co., Ltd, Beijing 100854, China;2.Institute of Space System Engineering, China Aerospace Science and Industry Corporation Limited, Beijing 100854, China

  • Received:2021-02-01 Revised:2021-03-22 Online:2021-11-15 Published:2021-11-15

摘要: 针对大型低轨星座在轨运行的高精度构型保持问题,提出了一种基于极限环的高精度相位保持方法。首先,推导了实际轨道与参考轨道的平相位角偏差与半长轴偏差的关系;然后,建立了基于极限环的相位保持周期以及半长轴改变量计算方法;最后,基于推导的半长轴偏差与相位偏差的关系,提出了一种相位保持实施方法。考虑地球非球形和大气阻力的数值仿真表明:本文提出的相位保持方法能够在卫星定轨数据精度不高、数据采样间隔较大的情况下,实现低轨星座系统的高精度相位保持。

关键词: 低轨星座, 相位保持, 平均轨道要素, 平相位角偏差

Abstract: Aiming at the problem of high precision configuration maintenance of large LEO constellation, a high precision phase keeping method based on limit cycle is proposed. Firstly, the relationship between the mean phase angle difference and semimajor axis difference between the actual orbit and the reference orbit is derived; secondly, the methodology for obtaining the phase keeping period and the semimajor axis change based on the limit cycle is established; finally, based on the relationship derived above, an implementation method of phase keeping is presented. The numerical simulation considering the Earth’s non spherical perturbation and atmospheric drag shows that the proposed method can achieve high precision phase keeping under the condition of low determination accuracy and long sampling interval for LEO constellation. 


Key words: LEO constellation, Phase keeping, Mean orbit elements, Mean phase angle difference

中图分类号: