Journal of Astronautics ›› 2023, Vol. 44 ›› Issue (9): 1280-1290.doi: 10.3873/j.issn.1000-1328.2023.09.002
Previous Articles Next Articles
NIU Ran1(), ZHANG Guang1(
), MU Lingli1, LIN Yangting2, LIU Jianzhong3, BO Zheng1, DAI Wei1, ZHANG Peng1(
)
Received:
2023-05-02
Revised:
2023-07-21
Online:
2023-09-15
Published:
2023-09-15
CLC Number:
NIU Ran, ZHANG Guang, MU Lingli, LIN Yangting, LIU Jianzhong, BO Zheng, DAI Wei, ZHANG Peng. Scientific Objectives and Suggestions on Landing Site Selection of Manned Lunar Exploration Engineering[J]. Journal of Astronautics, 2023, 44(9): 1280-1290.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yhxb.org.cn/EN/10.3873/j.issn.1000-1328.2023.09.002
序号 | 任务 | 国家/组织 | 科学与技术目标 |
---|---|---|---|
1 | 嫦娥六号 | 中国2022—2024 | 月背样品采集与返回 |
2 | VIPER | NASA 2023 | 月球极区巡视探测与极区科学研究,特别是挥发分的探测 |
3 | LUPEX | JAXA/ISRO 2023/24 | 极区着陆与巡视探测;极区科学探测以及挥发分分布和特征 |
4 | 月球-26 | 俄罗斯国家航天集团2024 | 验证极区科学轨道器以及极区挥发分制图 |
5 | 月球-27 | 俄罗斯国家航天集团2025 | 极区科学探测以及挥发分勘探和采样;验证钻取技术 |
6 | EL3-ISRU DM | ESA 2027/2028 | 月球原位月壤端对端氧气提取 |
7 | 月球-28 | 俄罗斯国家航天集团2027 | 低温极区挥发分物样品返回 |
8 | 嫦娥七号 | 中国2023—2030 | 极区着陆与探测 |
9 | 嫦娥八号 | 中国2023—2030 | 国际月球研究站(ILRS)的基础型 |
10 | 韩国月球着陆器 | KARI 2030 | 技术验证 |
Table 1 Future lunar exploration plans and objectives
序号 | 任务 | 国家/组织 | 科学与技术目标 |
---|---|---|---|
1 | 嫦娥六号 | 中国2022—2024 | 月背样品采集与返回 |
2 | VIPER | NASA 2023 | 月球极区巡视探测与极区科学研究,特别是挥发分的探测 |
3 | LUPEX | JAXA/ISRO 2023/24 | 极区着陆与巡视探测;极区科学探测以及挥发分分布和特征 |
4 | 月球-26 | 俄罗斯国家航天集团2024 | 验证极区科学轨道器以及极区挥发分制图 |
5 | 月球-27 | 俄罗斯国家航天集团2025 | 极区科学探测以及挥发分勘探和采样;验证钻取技术 |
6 | EL3-ISRU DM | ESA 2027/2028 | 月球原位月壤端对端氧气提取 |
7 | 月球-28 | 俄罗斯国家航天集团2027 | 低温极区挥发分物样品返回 |
8 | 嫦娥七号 | 中国2023—2030 | 极区着陆与探测 |
9 | 嫦娥八号 | 中国2023—2030 | 国际月球研究站(ILRS)的基础型 |
10 | 韩国月球着陆器 | KARI 2030 | 技术验证 |
位置 | 编号 | 中文名 | 经度 | 纬度 | 着陆区特点与探测价值 | |||
---|---|---|---|---|---|---|---|---|
低纬度 | 1 | 伊娜 | 5.3 | 18.66 | 月球特殊火山活动区域;成因与形成年龄存在争议(可能小于100Ma) | |||
2 | Reiner Gamma漩涡 | -59 | 7.5 | 月球磁异常区域;磁异常可达20 nT~1 000 nT(月球表面);相对周围区域表现出较弱的OH吸收特征 | ||||
3 | 马里乌斯山 | -53 | 13 | 月球特殊火山活动区域(穹窿);可研究内部挥发分 | ||||
4 | 波得月溪 | -4.755 | 10.956 | 高Ti火山碎屑物质,面积可达7 000 km2;月表反射率低的区域;岩石和构造多样;探测到来自月幔深部的包体物质;适合开展对地观测(正面低纬度平坦区域) | ||||
5 | 拉塞尔区域 | -9.04 | -14.65 | 富硅质火山活动;古老地层单元(~4.0 Ga);热点(hot spots)区域 | ||||
6 | 中丰富海熔岩管道 | 48.66 | 0.92 | 熔岩管道(存在斜坡入口);地势平坦的玄武岩区域 | ||||
7 | 齐奥尔科夫斯基坑 | 128.51 | -19.35 | 不同类型斜长岩;中央峰;撞击熔融物和角砾岩;撞击过程 | ||||
8 | 里乔利坑 | -74.28 | -3.04 | 东海撞击溅射物;薄层玄武岩;丰富的氦-3资源;利于观测地球;月-海交界地带 | ||||
9 | 艾肯坑 | 173.48 | -16.76 | 背面月海区域;揭示SPA撞击过程;出现中央峰(深部物质) | ||||
10 | 阿方萨斯坑 | -2.16 | -12.56 | 火山和构造丰富的区域;13处火山碎屑岩;复杂火山通道;火山口 | ||||
11 | 苏尔皮西 乌斯·加卢斯 | 10.37 | 19.87 | 橙色月壤(火山碎屑);复杂火山活动;月幔包体;高地物质 | ||||
12 | 拉兰德 | -7 | -4 | 月球极富Th的区域;高地月壤;古老月壳物质;可能采到真正的KREEP岩石 | ||||
13 | 斯特拉顿 | 166.88 | -2.08 | 高地月壤;高地古老岩浆活动 | ||||
14 | 东海 | -86.5 | -14 | 多环撞击盆地;撞击过程;盆地地质 | ||||
中高 纬度 | 15 | 阿利斯塔克 | -49 | 20 | 分布多种岩石;区域地质过程复杂;分布月球年轻玄武岩(P60玄武岩单元);火山与构造活动复杂;研究月球撞击过程与历史 | |||
16 | 格鲁伊图伊森 | -40.14 | 36.03 | 火山穹窿(富硅质);富KREEP月壤;年轻火山单元 | ||||
17 | 巴巴坑 | -164.5 | -55.1 | SPA盆地内的特殊地质单元;撞击过程;深部(下月壳)物质;SPA撞击熔融物 | ||||
18 | 莫斯科海 | 150.47 | 26.19 | 月球背面古老撞击坑(~4.1 Ga);出现多期次(2.6~3.9 Ga)玄武岩活动;磁学异常区域 | ||||
19 | 孟德尔-里德 伯隐月海 | -93.07 | -51.14 | 古老月海;隐月海;磁异常 | ||||
中高 纬度 | 20 | 洪堡海 | 77.14 | 54.54 | 分布不同年龄和不同组成的物质;玄武岩年龄和组成;盆地熔融物 | |||
21 | 柏拉图溅射物 | -5.21 | 53.37 | 雷达异常区域;高地月壤;火山碎屑 | ||||
22 | 范德格拉夫坑 | 172.08 | -26.92 | 磁异常区域;Th异常区域;撞击过程 | ||||
23 | 阿波罗盆地 | -153.72 | -37.05 | 背面月海;斜长质高地物质;撞击盆地内环;撞击地质过程;纯斜长岩 | ||||
24 | 智海 | 164.42 | -35.48 | 背面月海,分布熔岩洞穴;磁异常区域;撞击过程 | ||||
25 | 第谷坑 | -11.2 | -42.99 | 年轻撞击坑(~110 Ma);对比研究不同地质单元(撞击熔融区、高地月壤、粗糙区域等)的月壤演化过程;中央峰;撞击过程 | ||||
极区 | 26 | 薛定谔盆地 | 135 | -75 | 露出月球分异演化各阶段的产物,如:月幔物质、壳-幔交界物质、SPA形成挖掘物质等;分布多种月壳岩石;重力异常;可研究撞击坑形成过程 | |||
27 | 康普顿-别 利科维奇 | 99.5 | 61.1 | Th异常区域;KREEP异常;高地月壤;富硅质岩浆活动 | ||||
28 | 阿蒙森坑 | 93.8 | -84.2 | 极区撞击坑;永久阴影区;正面适合着陆的南极区域 | ||||
29 | 沙克尔顿坑 | 0 | -89.9 | 形成~3.6 Ga(雨海纪);分布着南极SPA撞击溅射物;主要由斜长石组成,含有少量辉石;岩石类型主要为亚铁斜长岩;探测到水冰和大量挥发分的存在 | ||||
30 | 埃尔米特 | -92.2 | 85.9 | 北极撞击坑;撞击过程;北极适合着陆的平坦区域 |
Table 2 Characteristics of 30 selected landing sites for manned lunar exploration
位置 | 编号 | 中文名 | 经度 | 纬度 | 着陆区特点与探测价值 | |||
---|---|---|---|---|---|---|---|---|
低纬度 | 1 | 伊娜 | 5.3 | 18.66 | 月球特殊火山活动区域;成因与形成年龄存在争议(可能小于100Ma) | |||
2 | Reiner Gamma漩涡 | -59 | 7.5 | 月球磁异常区域;磁异常可达20 nT~1 000 nT(月球表面);相对周围区域表现出较弱的OH吸收特征 | ||||
3 | 马里乌斯山 | -53 | 13 | 月球特殊火山活动区域(穹窿);可研究内部挥发分 | ||||
4 | 波得月溪 | -4.755 | 10.956 | 高Ti火山碎屑物质,面积可达7 000 km2;月表反射率低的区域;岩石和构造多样;探测到来自月幔深部的包体物质;适合开展对地观测(正面低纬度平坦区域) | ||||
5 | 拉塞尔区域 | -9.04 | -14.65 | 富硅质火山活动;古老地层单元(~4.0 Ga);热点(hot spots)区域 | ||||
6 | 中丰富海熔岩管道 | 48.66 | 0.92 | 熔岩管道(存在斜坡入口);地势平坦的玄武岩区域 | ||||
7 | 齐奥尔科夫斯基坑 | 128.51 | -19.35 | 不同类型斜长岩;中央峰;撞击熔融物和角砾岩;撞击过程 | ||||
8 | 里乔利坑 | -74.28 | -3.04 | 东海撞击溅射物;薄层玄武岩;丰富的氦-3资源;利于观测地球;月-海交界地带 | ||||
9 | 艾肯坑 | 173.48 | -16.76 | 背面月海区域;揭示SPA撞击过程;出现中央峰(深部物质) | ||||
10 | 阿方萨斯坑 | -2.16 | -12.56 | 火山和构造丰富的区域;13处火山碎屑岩;复杂火山通道;火山口 | ||||
11 | 苏尔皮西 乌斯·加卢斯 | 10.37 | 19.87 | 橙色月壤(火山碎屑);复杂火山活动;月幔包体;高地物质 | ||||
12 | 拉兰德 | -7 | -4 | 月球极富Th的区域;高地月壤;古老月壳物质;可能采到真正的KREEP岩石 | ||||
13 | 斯特拉顿 | 166.88 | -2.08 | 高地月壤;高地古老岩浆活动 | ||||
14 | 东海 | -86.5 | -14 | 多环撞击盆地;撞击过程;盆地地质 | ||||
中高 纬度 | 15 | 阿利斯塔克 | -49 | 20 | 分布多种岩石;区域地质过程复杂;分布月球年轻玄武岩(P60玄武岩单元);火山与构造活动复杂;研究月球撞击过程与历史 | |||
16 | 格鲁伊图伊森 | -40.14 | 36.03 | 火山穹窿(富硅质);富KREEP月壤;年轻火山单元 | ||||
17 | 巴巴坑 | -164.5 | -55.1 | SPA盆地内的特殊地质单元;撞击过程;深部(下月壳)物质;SPA撞击熔融物 | ||||
18 | 莫斯科海 | 150.47 | 26.19 | 月球背面古老撞击坑(~4.1 Ga);出现多期次(2.6~3.9 Ga)玄武岩活动;磁学异常区域 | ||||
19 | 孟德尔-里德 伯隐月海 | -93.07 | -51.14 | 古老月海;隐月海;磁异常 | ||||
中高 纬度 | 20 | 洪堡海 | 77.14 | 54.54 | 分布不同年龄和不同组成的物质;玄武岩年龄和组成;盆地熔融物 | |||
21 | 柏拉图溅射物 | -5.21 | 53.37 | 雷达异常区域;高地月壤;火山碎屑 | ||||
22 | 范德格拉夫坑 | 172.08 | -26.92 | 磁异常区域;Th异常区域;撞击过程 | ||||
23 | 阿波罗盆地 | -153.72 | -37.05 | 背面月海;斜长质高地物质;撞击盆地内环;撞击地质过程;纯斜长岩 | ||||
24 | 智海 | 164.42 | -35.48 | 背面月海,分布熔岩洞穴;磁异常区域;撞击过程 | ||||
25 | 第谷坑 | -11.2 | -42.99 | 年轻撞击坑(~110 Ma);对比研究不同地质单元(撞击熔融区、高地月壤、粗糙区域等)的月壤演化过程;中央峰;撞击过程 | ||||
极区 | 26 | 薛定谔盆地 | 135 | -75 | 露出月球分异演化各阶段的产物,如:月幔物质、壳-幔交界物质、SPA形成挖掘物质等;分布多种月壳岩石;重力异常;可研究撞击坑形成过程 | |||
27 | 康普顿-别 利科维奇 | 99.5 | 61.1 | Th异常区域;KREEP异常;高地月壤;富硅质岩浆活动 | ||||
28 | 阿蒙森坑 | 93.8 | -84.2 | 极区撞击坑;永久阴影区;正面适合着陆的南极区域 | ||||
29 | 沙克尔顿坑 | 0 | -89.9 | 形成~3.6 Ga(雨海纪);分布着南极SPA撞击溅射物;主要由斜长石组成,含有少量辉石;岩石类型主要为亚铁斜长岩;探测到水冰和大量挥发分的存在 | ||||
30 | 埃尔米特 | -92.2 | 85.9 | 北极撞击坑;撞击过程;北极适合着陆的平坦区域 |
[1] | 果琳丽, 王平, 朱恩涌. 载人月球基地工程[M]. 北京: 中国宇航出版社, 2013: 56-96. |
[2] | 张崇峰, 许惟扬, 王燕. 载人月球探测月面活动发展设想[J]. 上海航天(中英文), 2021, 38(3): 109-118. |
ZHANG Chongfeng, XU Weiyang, WANG Yan. Development ideas of manned lunar surface exploration[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 109-118. | |
[3] | 周建平, 吴季. 统筹空间科学、空间技术、空间应用协调发展的思考[J]. 中国工程科学, 2023, 25(2): 59-66. |
ZHOU Jianping, WU Ji. Coordinated development of space science, space technology, and space application in China[J]. Strategic Study of CAE, 2023, 25(2): 59-66.
doi: 10.15302/J-SSCAE-2023.07.016 URL |
|
[4] |
欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展, 2004, 19(3): 351-358.
doi: 10.11867/j.issn.1001-8166.2004.03.0351 |
OUYANG Ziyuan. Scientific objectives of Chinese lunar explo-ration project and development strategy[J]. Advance in Earth Sciences, 2004, 19(3): 351-358. | |
[5] | GRANT H, DAVID V, BEVAN M F. Lunar source book: A user’s guide to the moon[M]. Cambridge: Cambridge Unive-rsity Press, 1991. |
[6] | NORBERG C. Human spaceflight and exploration[M]. Berlin: Springer, 2013. |
[7] | 欧阳自远, 邹永廖, 李春来, 等. 月球某些资源的开发利用前景[J]. 地球科学, 2002, 27(5): 498-503. |
OUYANG Ziyuan, ZOU Yongliao, LI Chunlai, et al. Prospect of exploration and utilization of some lunar resources[J]. Earth Science, 2002, 27(5): 498-503. | |
[8] | 李志杰, 果琳丽, 彭坤. 载人月球基地选址的几个基本因素[J]. 载人航天, 2015, 21(2): 158-162. |
LI Zhijie, GUO Linli, PENG Kun. Research on site selection of manned lunar base[J]. Manned Spaceflight, 2015, 21(2): 158-162. | |
[9] | ECKART P, ECKART P, ALDRIN B. The Lunar Base Handbook:An Introduction to Lunar Base Design, Development, and Operations[M]. 2nd ed. Boston: McGraw-Hill, 2006. |
[10] |
JIA Y T, LIU L, WANG X C, et al. Selection of lunar south pole landing site based on constructing and analyzing fuzzy cognitive maps[J]. Remote Sensing, 2022, 14(19): 4863.
doi: 10.3390/rs14194863 URL |
[11] | HOWARD A, SERAJI H. A fuzzy rule-based safety index for landing site risk assessment[C]. The 5th Biannual World Auto-mation Congress, Orlando, USA June 9-13, 2002. |
[12] | 吴伟仁, 王大轶, 毛晓艳, 等. 基于月面单幅图像的软着陆障碍识别与安全区选取方法[J]. 深空探测学报, 2014, 1(4): 262-268. |
WU Weiren, WANG Dayi, MAO Xiaoyan, et al. Obstacle recognition and safe area selection method in soft landing based on a single lunar image[J]. Journal of Deep Space Exploration, 2014, 1(4): 262-268.
doi: 10.15982/j.issn.2095-7777.2014.04.003 |
|
[13] | 欧阳自远. 月球探测的进展与中国的月球探测[J]. 地质科技情报, 2004, 23(4): 1-5. |
OUYANG Ziyuan. International lunar exploration progress and Chinese lunar exploration[J]. Geological Science and Techno-logy Information, 2004, 23(4): 1-5. | |
[14] | MERANCY N F, SANRAFIN M, GRUBER J. Humanlunar mission design: Then and now[C]. The 70th International Astronautical Congress, Virtual Events, October 12-14, 2020. |
[15] | PETERSEN D, CHARVANT J, SOMERS J, et al. Apollo to Artemis: Mining 50-Year Old Records to Inform Future Human Lunar Landing Systems[C]. NASA Human Research Program Investigators’ Workshop, Galveston, USA, January 27-30, 2020. |
[16] | 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 南京航空航天大学学报, 2015, 47(6): 785-791. |
SUN Zezhou, MENG Linzhi. Current situation and sustainable development trend of deep space exploration in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(6): 785-791. | |
[17] | VON EHRENFRIED M. The Artemis lunar program: Returning people to the Moon[M]. Cham: Springer International Publis-hing, 2020. |
[18] | 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586. |
PEI Zhaoyu, LIU Jizhong, WANG Qian, et al. Overview of lunar exploration and International Lunar Research Station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586. | |
[19] | CHEN C, CHEN H, JING Q. A research on evaluation system for site selection of manned lunar base[C]. International Astron-autical Congress, Jerusalem, Israel, October 12-16, 2015. |
[20] | 林杨挺. 尚未解决的关键科学问题:后续月球探测的科学目标[C]. 中国矿物岩石地球化学学会第17届学术年会,杭州, 2019年4月19-22日. |
LIN Yangting. Unsolved key scientific problems: Scientific objectives of the follow-up lunar exploration[C]. The 17th Annual Academic Conference of the Chinese Society of Mineral and Petrology Geochemistry, Hangzhou, April 19-22, 2019. | |
[21] | 肖龙, 乔乐, 肖智勇, 等. 月球着陆探测值得关注的主要科学问题及着陆区选址建议[J]. 中国科学:物理学力学天文学, 2016, 46(2): 9-30. |
XIAO Long, QIAO Le, XIAO Zhiyong, et al. Major scientific objectives and candidate landing sites suggested for future lunar explorations[J]. Scientia Sinica (Physica, Mechanica & Astro-nomica), 2016, 46(2): 9-30. | |
[22] |
LIU J C, LI J. Solidification of lunar core from melting experiments on the Fe-Ni-S system[J]. Earth and Planetary Science Letters, 2020, 530: 115834.
doi: 10.1016/j.epsl.2019.115834 URL |
[23] | GLEIßNER P, SALME J, BECKER H. Magmatic fractionation and degassing of siderophile volatile elements in lunar magmatic rockss[C]. The 52nd Lunar and Planetary Science Conference, Virtual Events, March 15-19, 2021. |
[24] | GONG S X, WIECZOREK M A. Is the lunar magnetic field correlated with gravity or topography?[J]. Journal of Geoph-ysical Research: Planets, 2020, 125(4): 006274. |
[25] |
TAGUCHI M, MOROTA T, KATO S. Lateral heterogeneity of lunar volcanic activity according to volumes of mare basalts in the farside basins[J]. Journal of Geophysical Research: Planets, 2017, 122(7): 1505-1521.
doi: 10.1002/jgre.v122.7 URL |
[26] | 杨蔚, 胡森, 李秋立, 等. 月球火山活动究竟能持续多久?[J]. 地球科学, 2022, 47(10): 3789-3791. |
YANG Wei, HU Sen, LI Qiuli, et al. How long can lunar volcanic activity last?[J]. Earth Science, 2022, 47(10): 3789-3791. | |
[27] | 杨亚洲, 刘洋. 嫦娥四号在月球背面发现碳质球粒陨石撞击残留物[J]. 地球与行星物理论评, 2022, 53(2): 233-235. |
YANG Yazhou, LIU Yang. The Chang’e-4 rover detected impact remnants rich in carbonaceous chondrite on the far side of the Moon[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(2): 233-235. | |
[28] |
VERMA P A, CHAUHAN M, CHAUHAN P. Lunar surface temperature estimation and thermal emission correction using Chandrayaan-2 imaging infrared spectrometer data for H2O & OH detection using 3 μm hydration feature[J]. Icarus, 2022, 383: 115075.
doi: 10.1016/j.icarus.2022.115075 URL |
[29] |
WU C, DENG J S, GUYONNET A, et al. A new serial-direction trail effect in CCD images of the lunar-based ultraviolet telescope[J]. Publications of the Astronomical Society of the Pacific, 2016, 128(968): 105007.
doi: 10.1088/1538-3873/128/968/105007 URL |
[30] | 刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907-918. |
LIU Jianzhong, LI Xiongyao, ZHU Kai, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907-918. | |
[31] | TAYLOR L A, TAYLOR D H S. Location of a lunar base: a site selection strategy[C]. The 5th International Conference on Space, New York, USA, June 1-6, 1996. |
[32] | SMITH M, CRAIG D, HERRMANN N, et al. The Artemis program: An overview of NASA’s activities to return humans to the moon[C]. IEEE Aerospace Conference, Big Sky, USA, March 7-14, 2020. |
[33] | BRIDENSTINE J. Artemis plan: NASA’s lunar exploration program overview[R]. Washington D.C., USA: National Aero-nautics and Space Administration, 2020. |
[34] |
FULLER S, LEHNHARDT E, ZAID C. Gateway program status and overview[J]. Journal of Space Safety Engineering, 2022, 9(4): 625-628.
doi: 10.1016/j.jsse.2022.07.008 URL |
[35] | COLAPRETE A, ELPHIC R C, SHIRLEY M, et al. The volatiles investigating polar exploration rover (VIPER) mission update[R]. Mountain View, USA: National Aeronautics and Space Administration, 2021. |
[36] | 葛丹桐, 崔平远. 地外天体着陆点选择综述与展望[J]. 深空探测学报, 2016, 3(3): 197-203. |
GE Dantong, CUI Pingyuan. Overview and prospect of planetary landing site selection[J]. Journal of Deep Space Exploration, 2016, 3(3): 197-203.
doi: 10.15982/j.issn.2095-7777.2016.03.001 |
|
[37] |
SPENCER D A, ADAMS D S, BONFIGLIO E, et al. Phoenix landing site hazard assessment and selection[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1196-1201.
doi: 10.2514/1.43932 URL |
[38] |
GRANT J A, GOLOMBEK M P, GROTZINGER J P, et al. The science process for selecting the landing site for the 2011 Mars Science Laboratory[J]. Planetary and Space Science, 2011, 59(11-12): 1114-1127.
doi: 10.1016/j.pss.2010.06.016 URL |
[39] | SMITH H J, GURSHTEIN A A, MENDELL W. International manned lunar base: beginning the 21 st century in space[J]. Science & Global Security, 1991, 2(2-3): 209-233. |
[40] |
FLAHAUT J, BLANCHETTE-GUERTIN J F, JILLY C, et al. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations[J]. Advances in Space Research, 2012, 50(12): 1647-1665.
doi: 10.1016/j.asr.2012.05.020 URL |
[41] | SHEVCHENKO V V. Manned lunar base site selection[J]. Journal of the British Interplanetary Society, 1995, 48(1): 15-20. |
[42] |
KASCHUBEK D, KILLIAN M, GRILL L. System analysis of a Moon base at the south pole: Considering landing sites, ECLSS and ISRU[J]. Acta Astronautica, 2021, 186: 33-49.
doi: 10.1016/j.actaastro.2021.05.004 URL |
[43] |
LIU X, LI S, JIANG X Q, et al. Planetary landing site detection and selection using multilevel optimization strategy[J]. Acta Astronautica, 2019, 163: 272-286.
doi: 10.1016/j.actaastro.2019.01.004 URL |
[44] |
GOLOMBEK M, GRANT J, KIPP D, et al. Selection of the Mars science laboratory landing site[J]. Space Science Reviews, 2012, 170(1): 641-737.
doi: 10.1007/s11214-012-9916-y URL |
[45] |
FUQUA HAVILAND H, WEBER R C, NEAL C R, et al. The lunar geophysical network landing sites science rationale[J]. The Planetary Science Journal, 2022, 3(2): 40.
doi: 10.3847/PSJ/ac0f82 |
[46] |
MOU N, LI J, MENG Z, et al. Multi-factor analysis for selecting lunar exploration soft landing area and the best cruise route[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-3: 1291-1298.
doi: 10.5194/isprs-archives-XLII-3-1291-2018 URL |
[47] | 钟振, 鄢建国, 贺怀宇, 等. 中国后续月球探测候选着陆区沙克尔顿撞击坑的光照及其风化层温度[J]. 中国科学:地球科学, 2023, 53(2): 403-415. |
ZHONG Zhen, YAN Jianguo, HE Huaiyu, et al. Illumination and regolith temperature at China’s next candidate lunar landing site Shackleton crater[J]. Scientia Sinica (Terrae), 2023, 53(2): 403-415. | |
[48] | 乔乐, 刘小倩, 赵健楠, 等. 月球雨海地区三个着陆点的地质特征对比研究[J]. 中国科学:物理学力学天文学, 2016, 46(2): 31-45. |
QIAO Le, LIU Xiaoqian, ZHAO Jiannan, et al. Geological investigations of Luna 17, Apollo 15 and Chang’e-3 landing sites at Mare Imbrium of the Moon[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016, 46(2): 31-45. | |
[49] |
CAO Y Q, WANG Y Z, LIU J Z, et al. Selection of whole-moon landing zones based on weights of evidence and fractals[J]. Remote Sensing, 2022, 14(18): 4623.
doi: 10.3390/rs14184623 URL |
[1] | ZHANG Hailian. Systems Engineering Technology for Overall Performance Improvement of Manned Lunar Exploration [J]. Journal of Astronautics, 2023, 44(9): 1267-1279. |
[2] | ZHOU Wanmeng, ZHOU Wenyan, DENG Xinyu, LI Gefei. Research on Integrated Mission Planning and Design Method for Manned Lunar Exploration [J]. Journal of Astronautics, 2023, 44(9): 1291-1303. |
[3] | WANG Cong, WANG Jinbo, SONG Zhengyu. Residual Carrying Capacity Evaluation and Parking Orbit Re-planning for Lunar Exploration Launch Vehicle [J]. Journal of Astronautics, 2023, 44(9): 1317-1328. |
[4] | TIAN Lin, WU Xinfeng, WANG Pengcheng, JING Xuzhen, ZHANG Haowei, HAO Ping, XU Ming, GONG Chunlin. Research on Design and Key Technologies of Launch Abort System for China’s Next-generation Manned Spacecraft [J]. Journal of Astronautics, 2023, 44(9): 1350-1359. |
[5] | MA Longyu, WANG Shenquan, JIANG Song, FU Hongwen, ZHANG Chongfeng, SHI Junwei. Research on a Torsional Manned Lunar Rover and its High Speed Mobility Performance [J]. Journal of Astronautics, 2023, 44(9): 1392-1400. |
[6] | HE Xiongwen, CHEN Chaoji, JIA Yuchen, ZHANG Bainan, XU Mingwei, LIU Yan, CHEN Ruixun. Design and Verification of Integrated Network and Protocol Architecture for China’s Manned Lunar Exploration [J]. Journal of Astronautics, 2023, 44(9): 1411-1422. |
[7] | WANG Kang, XIN Pengfei, WANG Chu, PAN Bo. Designand Verification of Integrated Suspension for Landing and Moving of Manned Lunar Mobility System [J]. Journal of Astronautics, 2023, 44(9): 1401-1410. |
[8] | ZHU Ke, LI Yanxin, WANG Dan, HUANG Kewu, WANG Xiaoyan, ZHANG Wei, TIAN Jia, DONG Chao. Research on System Architecture and Key Technologies of Lunar Communication Network for Manned Lunar Exploration [J]. Journal of Astronautics, 2023, 44(9): 1423-1435. |
[9] | PENG Qibo, WANG Ping, XING Lei. Considerations on Several Issues of China’s Manned Lunar Scientific Research and Test Station [J]. Journal of Astronautics, 2023, 44(9): 1436-1446. |
[10] | WANG Hua, LYU Jiyuan, LI Haiyang. Composable Simulation Design and Experiment of Manned Lunar Exploration Sequence Missions [J]. Journal of Astronautics, 2023, 44(9): 1447-1459. |
[11] | PENG Kun, HAN Dong, LIU Xia, LIANG Lu. System Design and Simulation Verification of Manned Lunar Exploration Spacecraft Based on SysML and Modelica [J]. Journal of Astronautics, 2023, 44(9): 1460-1470. |
[12] | LIU Lei , LIU Ye, CHENG Yu, LIU Yong. Linked Autonomous Orbit Determination of Satellites in Cislunar Space and Lunar Halo Orbit [J]. Journal of Astronautics, 2023, 44(8): 1151-1159. |
[13] | HU Hao, DONG Guangliang, PEI Zhaoyu, LI Haitao, HUANG Lei, REN Junjie, GE Ping, CHEN Shaowu, FAN Min. Design and Implementation of TT&C Scheme of Reentry and Return Phase of the Chang’e-5 Mission [J]. Journal of Astronautics, 2023, 44(5): 670-676. |
[14] | ZHAO Yu, WANG Ping, HOU Zhendong, PENG Chaoran, YU Huan. Analysis of Manned Deep Space Exploration of SpaceX’s Starship Spacecraft [J]. Journal of Astronautics, 2023, 44(5): 2-. |
[15] | YU Dengyun, PAN Bo, MA Chao. Research Status and Development Prospect of Planetary Exploration Robots [J]. Journal of Astronautics, 2023, 44(4): 633-643. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||