Journal of Astronautics ›› 2023, Vol. 44 ›› Issue (9): 1305-1316.doi: 10.3873/j.issn.1000-1328.2023.09.004
Previous Articles Next Articles
ZHANG Zhi1, MA Ying2, ZHU Haiyang2, DU Haoyu2, MIAO Xinyuan2
Received:
2023-07-21
Revised:
2023-07-30
Online:
2023-09-15
Published:
2023-09-15
CLC Number:
ZHANG Zhi, MA Ying, ZHU Haiyang, DU Haoyu, MIAO Xinyuan. Research on the Concept and Evaluation Method for Reconfigurability of Launch Vehicles[J]. Journal of Astronautics, 2023, 44(9): 1305-1316.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yhxb.org.cn/EN/10.3873/j.issn.1000-1328.2023.09.004
方位角/(°) | Mx最大净力矩/ (N·m) | My最大净力矩/ (N·m) | Mz最大净力矩/ (N·m) | 体积/m3 | 俯仰偏航平面最大 剩余控制能力/(N·m) |
---|---|---|---|---|---|
15 | ±6.24 | ±132.08* | ±28.38 | 9 844.7 | 28.38 |
30 | ±7.43 | ±111.64 | ±55.01 | 161 151.4 | 53.47 |
45 | ±8.74 | ±96.69 | ±77.92 | 220 136.9 | 72.31 |
60 | ±10.91* | ±83.73 | ±95.48 | 241 727* | 83.73* |
75 | ±8.91 | ±70.78 | ±106.44 | 220 136.9 | 70.78 |
90 | ±6.30 | ±55.82 | ±110.03* | 161 151.4 | 55.82 |
105 | ±3.26 | ±35.39 | ±105.93 | 80 575.7 | 35.39 |
120 | 0 | 0 | ±96.63 | 0 | 0 |
135 | ±2.34 | ±48.34 | ±76.97 | 58 985.5 | 41.52 |
150 | ±3.71 | ±96.69 | ±55.82 | 80 575.7 | 47.52 |
165 | ±4.57 | ±132.08* | ±28.17 | 58 985.5 | 27.85 |
Table 1 The effectiveness on control moment of the azimuth angle of servo
方位角/(°) | Mx最大净力矩/ (N·m) | My最大净力矩/ (N·m) | Mz最大净力矩/ (N·m) | 体积/m3 | 俯仰偏航平面最大 剩余控制能力/(N·m) |
---|---|---|---|---|---|
15 | ±6.24 | ±132.08* | ±28.38 | 9 844.7 | 28.38 |
30 | ±7.43 | ±111.64 | ±55.01 | 161 151.4 | 53.47 |
45 | ±8.74 | ±96.69 | ±77.92 | 220 136.9 | 72.31 |
60 | ±10.91* | ±83.73 | ±95.48 | 241 727* | 83.73* |
75 | ±8.91 | ±70.78 | ±106.44 | 220 136.9 | 70.78 |
90 | ±6.30 | ±55.82 | ±110.03* | 161 151.4 | 55.82 |
105 | ±3.26 | ±35.39 | ±105.93 | 80 575.7 | 35.39 |
120 | 0 | 0 | ±96.63 | 0 | 0 |
135 | ±2.34 | ±48.34 | ±76.97 | 58 985.5 | 41.52 |
150 | ±3.71 | ±96.69 | ±55.82 | 80 575.7 | 47.52 |
165 | ±4.57 | ±132.08* | ±28.17 | 58 985.5 | 27.85 |
项目 | Frobenius范数 | 椭球体积 |
---|---|---|
值 | 0.176 5 | 7.460 5×10-4 |
Table 2 Evaluating indicators of system controllability
项目 | Frobenius范数 | 椭球体积 |
---|---|---|
值 | 0.176 5 | 7.460 5×10-4 |
[1] | 丁正. 可重构计算体系结构及应用研究[D]. 上海: 上海交通大学, 2013. |
DING Zheng. The research of reconfgurable computing archi-tectures and applications[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
[2] | 魏少军, 刘雷波, 尹首一. 可重构计算处理器技术[J]. 中国科学:信息科学, 2012, 42(12): 1559-1576. |
WEI Shaojun, LIU Leibo, YIN Shouyi. Key techniques of rec-onfigurable computing processor[J]. Scientia Sinica (Informa-tionis), 2012, 42(12): 1559-1576. | |
[3] | 魏少军, 李兆石, 朱建峰, 等. 可重构计算:软件可定义的计算引擎[J]. 中国科学:信息科学, 2020, 50(9): 1407-1426. |
WEI Shaojun, LI Zhaoshi, ZHU Jianfeng, et al. Reconfigurable computing: toward software defined chips[J]. Scientia Sinica (Informationis), 2020, 50(9): 1407-1426. | |
[4] | 苟铭泽, 崔少辉. PXIe总线可重构测试仪器设计[J]. 自动化仪表, 2017, 38(11): 68-70, 74. |
GOU Mingze, CUI Shaohui. Design of the PXIe bus reconfigurable test instrument[J]. Process Automation Instrumentation, 2017, 38(11): 68-70, 74. | |
[5] | 郑鑫, 肖明清, 程嗣怡, 等. 可重构测试仪器设计[J]. 计算机工程, 2007, 33(5): 264-265, 268. |
ZHENG Xin, XIAO Mingqing, CHENG Siyi, et al. Design of reconfigurable test instruments[J]. Computer Engineering, 2007, 33(5): 264-265, 268.
doi: 10.1063/1.30850 URL |
|
[6] | 李常茗, 李承恕, 唐云. 复合可重构无线移动通信系统建模与分析[J]. 北京交通大学学报, 2008, 32(2): 53-57. |
LI Changming, LI Chengshu, TANG Yun. Modeling and analysis on composite reconfigurable wireless mobile communications system[J]. Journal of Beijing Jiaotong University, 2008, 32(2): 53-57. | |
[7] | 唐亮, 刘辉, 陈晨, 等. 基于末子级应用的可重构通信载荷研究设想[J]. 空间电子技术, 2017, 14(1): 4-8. |
TANG Liang, LIU Hui, CHEN Chen, et al. Research ideas of reconfigurable communication payload based on the application of last-stage launch vehicle[J]. Space Electronic Technology, 2017, 14(1): 4-8. | |
[8] | 许虹. 可重构机床设计理论与方法研究[D]. 杭州: 浙江大学, 2003. |
XU Hong. Research on the theory and method for reconfigurable machine tool design[D]. Hangzhou: Zhejiang University, 2003. | |
[9] | 李晓舟, 王长梅, 满健康. 可重构制造系统及其关键技术[J]. 机电技术, 2014, 37(2): 155-157. |
LI Xiaozhou, WANG Changmei, MAN Jiankang. Reconfigurable manufacturing system and its key technologies[J]. Mechanical & Electrical Technology, 2014, 37(2): 155-157. | |
[10] |
ESTRIN G, BUSSELL B, TURN R, et al. Parallel processing in a restructurable computer system[J]. IEEE Transactions on Electronic Computers, 1963, EC-12(6): 747-755.
doi: 10.1109/PGEC.1963.263558 URL |
[11] |
COMPTON K, HAUCK S. Reconfigurable computing[J]. ACM Computing Surveys, 2002, 34(2): 171-210.
doi: 10.1145/508352.508353 URL |
[12] | 付振鹏. 面向导弹测试的PXI可重构仪器研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
FU Zhenpeng. Research on PXI reconfigurable instrument for missile tests[D]. Harbin: Harbin Institute of Technology, 2014. | |
[13] | 桑子儒. 可重构核仪器的研究[D]. 合肥: 中国科学技术大学, 2013. |
SANG Ziru. Research of reconfiguurable nuclear instrument system[D]. Hefei: University of Science and Technology of China, 2013. | |
[14] |
兰巨龙, 邢池强, 胡宇翔, 等. 可重构技术与未来网络体系架构[J]. 电信科学, 2013, 29(8): 16-23.
doi: 10.3969/j.issn.1000-0801.2013.08.003 |
LAN Julong, XING Chiqiang, HU Yuxiang, et al. Reconfiguration technology and future network architecture[J]. Telecommunications Science, 2013, 29(8): 16-23.
doi: 10.3969/j.issn.1000-0801.2013.08.003 |
|
[15] | 李黎, 管晓宏, 蔡忠闽, 等. 可重构网络系统的模型及体系结构[J]. 小型微型计算机系统, 2009, 30(4): 637-641. |
LI Li, GUAN Xiaohong, CAI Zhongmin, et al. Reconfigurable network model and architecture[J]. Journal of Chinese Computer Systems, 2009, 30(4): 637-641. | |
[16] | 刘辉, 李光杰. 软件重构技术研究[M]. 北京: 北京理工大学出版社, 2016. |
[17] |
MEHRABI M G, ULSOY A G, KOREN Y. Reconfigurable manufacturing systems: Key to future manufacturing[J]. Journal of Intelligent Manufacturing, 2000, 11(4): 403-419.
doi: 10.1023/A:1008930403506 URL |
[18] | 蔡宗琰, 严新民. 计算机辅助可重构制造系统设计[J]. 计算机辅助设计与图形学学报, 2002, 14(2): 125-129. |
CAI Zongyan, YAN Xinmin. Computer aided reconfigurable manufacturing system design[J]. Journal of Computer Aided Design & Computer Graphics, 2002, 14(2): 125-129. | |
[19] | 秦培元. 可重构天线的研究及其在MIMO系统中的应用[D]. 西安: 西安电子科技大学, 2011. |
QIN Peiyuan. Study of reconfigurable antennas and their applications in MIMO systems[D]. Xi’an: Xidian University, 2011. | |
[20] | 王浩然. 星载可重构系统的设计与实现[D]. 西安: 西安电子科技大学, 2014. |
WANG Haoran. The design and implementation of the recon-figurable spacebome system[D]. Xi’an: Xidian University, 2014. | |
[21] | 李剑锋. 立方体卫星星上软件在线重构技术研究[D]. 南京: 南京理工大学, 2019. |
LI Jianfeng. Research on on-line reconfiguration technology of on-board software of cubic satellite[D]. Nanjing: Nanjing Unive-rsity of Science and Technology, 2019. | |
[22] | 梁广, 龚文斌, 刘会杰, 等. 低轨卫星可重构通信系统设计[J]. 宇航学报, 2010, 31(1): 185-191. |
LIANG Guang, GONG Wenbin, LIU Huijie, et al. The design of reconfigurable LEO satellite communication system[J]. Journal of Astronautics, 2010, 31(1): 185-191. | |
[23] |
王博, 叶东, 孙兆伟, 等. 模块化可重构卫星在轨自重构的分层规划[J]. 航空学报, 2019, 40(9): 322912.
doi: 10.7527/S1000-6893.2019.22912 |
WANG Bo, YE Dong, SUN Zhaowei, et al. Hierarchical planning for on-orbit self-reconfiguration of modular reconfigurable satellites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 322912.
doi: 10.7527/S1000-6893.2019.22912 |
|
[24] | 黄盘兴. 重型运载火箭可重构控制系统设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
HUANG Panxing. Research on reconfigurable control system design of heavy launch vehicle[D]. Harbin: Harbin Institute of Technology, 2012. | |
[25] | 王志祥. 推力下降故障下运载火箭轨迹在线生成与姿控系统重构[D]. 长沙: 国防科学技术大学, 2016. |
WANG Zhixiang. On-line trajectory generation and attitude control system reconstruction for launch vehicle with thrust decline[D]. Changsha: National University of Defense Tech-nology, 2016. | |
[26] | 程堂明, 李家文, 唐国金. 伺服机构故障下基于线性规划的运载火箭姿控系统重构控制[J]. 国防科技大学学报, 2017, 39(1): 51-57. |
CHENG Tangming, LI Jiawen, TANG Guojin. Reconstruction of attitude control system of launch vehicle based on linear prog-ramming under servo mechanism fault[J]. Journal of National University of Defense Technology, 2017, 39(1): 51-57. | |
[27] |
WU N E, ZHOU K M, SALOMON G. Control reconfigurability of linear time-invariant systems[J]. Automatica, 2000, 36(11): 1767-1771.
doi: 10.1016/S0005-1098(00)00080-7 URL |
[28] | FREI C W, KRAUS F J, BLANKE M. Recoverability viewed as a system property[C]. European Control Conference (ECC), Karlsruhe, Germany, August 31-September 3, 1999. |
[29] | DURHAM W, BORDIGNON K A, BECK R. Aircraft Control Allocation[M]. Hoboken: Wiley, 2016. |
[30] | KÁLMÁN R. Controllability of linear dynamical systems[J]. Contributions to Differential Equations, 1963, 1: 189-213. |
[31] |
HU T S, LIN Z L, CHEN B M. An analysis and design method for linear systems subject to actuator saturation and disturbance[J]. Automatica, 2002, 38(2): 351-359.
doi: 10.1016/S0005-1098(01)00209-6 URL |
[32] | 龙乐豪. 总体设计(中)[M]. 北京: 宇航出版社, 2005: 111-166. |
[1] | WANG Peisheng, QU Dongyang, RAN Maopeng, DONG Chaoyang. Adaptive Sliding mode Control of Launch Vehicle with Actuator Failures [J]. Journal of Astronautics, 2023, 44(8): 1160-1170. |
[2] | GUO Jie, SONG Manjin, LIU Qing, TANG Shengjing. Endo-atmospheric Closed-loop Guidance Method for Solid-boosted Vehicle [J]. Journal of Astronautics, 2023, 44(6): 863-873. |
[3] | YU Haisen, TAN Shujun, LIU Hao, MAO Yuming. Identification Method for Thrust and Mass of Launch Vehicle under Power System Fault [J]. Journal of Astronautics, 2023, 44(6): 895-905. |
[4] | WU Yansheng. Review and Prospect of Attitude Control Technologies for China’s Launch Vehicle [J]. Journal of Astronautics, 2023, 44(4): 509-518. |
[5] | WANG Dayi, TU Yuanyuan, ZHANG Xiangyan, FU Fangzhou. Theory and Method of Autonomous Fault Diagnosis and System Reconfiguration for Spacecraft [J]. Journal of Astronautics, 2023, 44(4): 546-557. |
[6] | WU Yansheng. Development Prospects of Intelligent Flight Technology of China’s Space Transportation System [J]. Journal of Astronautics, 2023, 44(3): 313-321. |
[7] | WANG Xiaojun. Systems Engineering Technology for Launch Coefficient Improvement [J]. Journal of Astronautics, 2023, 44(3): 322-333. |
[8] | WANG Guohui, ZHANG Hongjian, WU Huiqiang. Development and Outlook of Non-pyrotechnic Separation Mechanism for Launch Vehicle [J]. Journal of Astronautics, 2023, 44(3): 334-347. |
[9] | ZHANG Bing, WU Wantong, SHEN Zhi, YIN Yuhui, CHEN Zedong, GAO Bo. Autonomous & Controllable Simulation Technology for the Next-generation Solid Launch Vehicles [J]. Journal of Astronautics, 2023, 44(3): 348-357. |
[10] | HE Wei, ZENG Yaoxiang, LIU Hui. Optimization Method of Load Design on the Interface of Launch Vehicle and Spacecraft [J]. Journal of Astronautics, 2023, 44(3): 368-378. |
[11] | CHENG Chuan, LIU Yang, WANG Jifei, CUI Cunyan, ZHU Xiongfeng. Investigation of Reverse Jet Effects on Aerodynamic Characteristics of Returned Launch Vehicle [J]. Journal of Astronautics, 2023, 44(3): 379-388. |
[12] | LI Bin, LYU Jun, ZENG Yaoxiang, WANG Lei, LIU Hui, ZHANG Sheng, CUI Miao. Pre stress Modal Analysis and Optimization of Parallel Frame of Seven Rocket Engines [J]. Journal of Astronautics, 2023, 44(2): 178-186. |
[13] | XU Shihao, WANG Wei, ZHANG Yuhao, PU Jialun, GUAN Yingzi. Barrier Transformation based Predefined time Control for Reusable Launch Vehicle with State Constraints [J]. Journal of Astronautics, 2023, 44(10): 1555-1563. |
[14] | LI Chaobing, BAO Weimin, LI Zhongkui, CHENG Xiaoming, WEI Caisheng. Trajectory Reachable Envelope Analysis of Launch Vehicle under Thrust Failure and Uncertainties [J]. Journal of Astronautics, 2023, 44(1): 25-33. |
[15] | WANG Rong, ZHAI Haitao, WANG Ziyao, WANG Minggang, XU Guowei. Overall Layout and Key Parameters Optimization of Landing Legs of the Reusable Launch Vehicle [J]. Journal of Astronautics, 2022, 43(8): 1010-1018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||