Journal of Astronautics ›› 2023, Vol. 44 ›› Issue (9): 1337-1349.doi: 10.3873/j.issn.1000-1328.2023.09.007
Previous Articles Next Articles
GUO Bin1, YANG Lei1, NI Qing2, LUO Taichao1
Received:
2023-06-30
Revised:
2023-07-31
Online:
2023-09-15
Published:
2023-09-15
CLC Number:
GUO Bin, YANG Lei, NI Qing, LUO Taichao. Aerodynamic Shape Design and Optimization of China’s Next-generation Manned Spacecraft[J]. Journal of Astronautics, 2023, 44(9): 1337-1349.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yhxb.org.cn/EN/10.3873/j.issn.1000-1328.2023.09.007
类型 | 研制成本(权重0.5) | 容积利用率(权重0.3) | 峰值过载/加热量(权重0.2) | ||||||
---|---|---|---|---|---|---|---|---|---|
钝头体 | 双锥体 | 升力体 | 钝头体 | 双锥体 | 升力体 | 钝头体 | 双锥体 | 升力体 | |
钝头体 | 0 | 1 | 1 | 0 | -1 | 1 | 0 | -1 | -1 |
双锥体 | -1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | -1 |
升力体 | -1 | -1 | 0 | -1 | -1 | 0 | 1 | 1 | 0 |
Table 1 Final scores for primary analysis of different aerodynamic shapes
类型 | 研制成本(权重0.5) | 容积利用率(权重0.3) | 峰值过载/加热量(权重0.2) | ||||||
---|---|---|---|---|---|---|---|---|---|
钝头体 | 双锥体 | 升力体 | 钝头体 | 双锥体 | 升力体 | 钝头体 | 双锥体 | 升力体 | |
钝头体 | 0 | 1 | 1 | 0 | -1 | 1 | 0 | -1 | -1 |
双锥体 | -1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | -1 |
升力体 | -1 | -1 | 0 | -1 | -1 | 0 | 1 | 1 | 0 |
区域 | 轴向位置 | 母线方程 | 切线方程 |
---|---|---|---|
I | 0≤x≤x1 | ||
II | x1≤x≤x3 | ||
III | x3≤x≤x4 |
Table 2 Calculation formula of the shape and characteristic points of the reentry capsule
区域 | 轴向位置 | 母线方程 | 切线方程 |
---|---|---|---|
I | 0≤x≤x1 | ||
II | x1≤x≤x3 | ||
III | x3≤x≤x4 |
组号 | 输入条件 | 输出条件 | |||||
---|---|---|---|---|---|---|---|
Rc/m | Rn/m | θ/(°) | CL/CD | 容积率 | 热流密度/ (kW·m-2) | ||
1 | 0.104 | 4.5 | 31 | 0.413 3 | 0.415 4 | 179 0 | |
2 | 0.116 | 5 | 19.8 | 0.410 7 | 0.469 7 | 170 1 | |
3 | 0.146 | 2.75 | 20.6 | 0.364 | 0.490 2 | 237 4 | |
4 | 0.098 | 4 | 17.4 | 0.401 6 | 0.477 2 | 191 0 | |
5 | 0.134 | 4.875 | 26.2 | 0.407 6 | 0.455 1 | 172 8 | |
6 | 0.086 | 4.375 | 23.8 | 0.416 8 | 0.455 6 | 181 5 | |
7 | 0.176 | 4.75 | 23 | 0.393 9 | 0.474 7 | 176 9 | |
8 | 0.152 | 3.5 | 15 | 0.372 | 0.495 4 | 207 5 | |
9 | 0.092 | 3.25 | 22.2 | 0.395 4 | 0.471 8 | 213 8 | |
10 | 0.158 | 4.625 | 16.6 | 0.389 2 | 0.485 6 | 178 8 | |
11 | 0.188 | 3.625 | 24.6 | 0.378 9 | 0.478 2 | 204 7 | |
12 | 0.11 | 2.875 | 15.8 | 0.367 4 | 0.494 9 | 230 4 | |
13 | 0.14 | 3.875 | 21.4 | 0.395 2 | 0.476 4 | 184 0 | |
14 | 0.122 | 2.625 | 27 | 0.365 | 0.472 3 | 243 2 | |
15 | 0.2 | 4.125 | 18.2 | 0.376 5 | 0.490 9 | 191 6 | |
16 | 0.182 | 2.5 | 25.4 | 0.345 | 0.487 6 | 252 5 | |
17 | 0.17 | 4.25 | 29.4 | 0.391 8 | 0.452 1 | 187 4 | |
18 | 0.194 | 3 | 19 | 0.359 7 | 0.496 0 | 227 6 | |
19 | 0.128 | 3.75 | 27.8 | 0.397 6 | 0.433 5 | 198 4 | |
20 | 0.08 | 3.375 | 28.6 | 0.402 4 | 0.441 5 | 208 8 | |
21 | 0.164 | 3.125 | 30.2 | 0.374 7 | 0.457 6 | 221 2 |
Table 3 Sample data summary
组号 | 输入条件 | 输出条件 | |||||
---|---|---|---|---|---|---|---|
Rc/m | Rn/m | θ/(°) | CL/CD | 容积率 | 热流密度/ (kW·m-2) | ||
1 | 0.104 | 4.5 | 31 | 0.413 3 | 0.415 4 | 179 0 | |
2 | 0.116 | 5 | 19.8 | 0.410 7 | 0.469 7 | 170 1 | |
3 | 0.146 | 2.75 | 20.6 | 0.364 | 0.490 2 | 237 4 | |
4 | 0.098 | 4 | 17.4 | 0.401 6 | 0.477 2 | 191 0 | |
5 | 0.134 | 4.875 | 26.2 | 0.407 6 | 0.455 1 | 172 8 | |
6 | 0.086 | 4.375 | 23.8 | 0.416 8 | 0.455 6 | 181 5 | |
7 | 0.176 | 4.75 | 23 | 0.393 9 | 0.474 7 | 176 9 | |
8 | 0.152 | 3.5 | 15 | 0.372 | 0.495 4 | 207 5 | |
9 | 0.092 | 3.25 | 22.2 | 0.395 4 | 0.471 8 | 213 8 | |
10 | 0.158 | 4.625 | 16.6 | 0.389 2 | 0.485 6 | 178 8 | |
11 | 0.188 | 3.625 | 24.6 | 0.378 9 | 0.478 2 | 204 7 | |
12 | 0.11 | 2.875 | 15.8 | 0.367 4 | 0.494 9 | 230 4 | |
13 | 0.14 | 3.875 | 21.4 | 0.395 2 | 0.476 4 | 184 0 | |
14 | 0.122 | 2.625 | 27 | 0.365 | 0.472 3 | 243 2 | |
15 | 0.2 | 4.125 | 18.2 | 0.376 5 | 0.490 9 | 191 6 | |
16 | 0.182 | 2.5 | 25.4 | 0.345 | 0.487 6 | 252 5 | |
17 | 0.17 | 4.25 | 29.4 | 0.391 8 | 0.452 1 | 187 4 | |
18 | 0.194 | 3 | 19 | 0.359 7 | 0.496 0 | 227 6 | |
19 | 0.128 | 3.75 | 27.8 | 0.397 6 | 0.433 5 | 198 4 | |
20 | 0.08 | 3.375 | 28.6 | 0.402 4 | 0.441 5 | 208 8 | |
21 | 0.164 | 3.125 | 30.2 | 0.374 7 | 0.457 6 | 221 2 |
自变量 | CL/CD各项系数 | 容积率各项系数 | 热流密度各项系数 |
---|---|---|---|
常数项 | -0.123 56 | 0.803 | 6 407.484 |
Rc | -0.399 27 | -3.277 | -1075.999 |
Rn | 0.225 438 | -0.060 936 | -1 427.537 |
θ | 0.022 246 | -0.001 437 | -1 66.558 |
2.073 861 | 20.060 | -10 894.702 | |
-0.046 65 | 0.005 581 | 200.413 | |
θ2 | -0.000 85 | -3.057×10-5 | 6.660 |
Rc×Rn | -0.028 27 | 0.064 | 44.129 |
Rc×θ | -0.000 86 | 0.014 8 | 31.362 |
Rn×θ | 4.707×10-5 | -0.000 227 | -0.160 |
-5.273 08 | -44.644 | 59 850.193 | |
0.003 382 | 0.000 123 | -8.880 | |
θ3 | 1.07×10-5 | -1.137×10-6 | -0.087 |
Table 4 Response surface approximation model coefficients for aerodynamic analysis
自变量 | CL/CD各项系数 | 容积率各项系数 | 热流密度各项系数 |
---|---|---|---|
常数项 | -0.123 56 | 0.803 | 6 407.484 |
Rc | -0.399 27 | -3.277 | -1075.999 |
Rn | 0.225 438 | -0.060 936 | -1 427.537 |
θ | 0.022 246 | -0.001 437 | -1 66.558 |
2.073 861 | 20.060 | -10 894.702 | |
-0.046 65 | 0.005 581 | 200.413 | |
θ2 | -0.000 85 | -3.057×10-5 | 6.660 |
Rc×Rn | -0.028 27 | 0.064 | 44.129 |
Rc×θ | -0.000 86 | 0.014 8 | 31.362 |
Rn×θ | 4.707×10-5 | -0.000 227 | -0.160 |
-5.273 08 | -44.644 | 59 850.193 | |
0.003 382 | 0.000 123 | -8.880 | |
θ3 | 1.07×10-5 | -1.137×10-6 | -0.087 |
数据 | 倒锥角 θ/(°) | 球冠 半径Rn/m | 肩部倒角 半径Rc/m | 升阻比CL/CD | 容积率 | 热流密度/(kW·m-2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
仿真值 | 近似值 | 偏差 | 仿真值 | 近似值 | 偏差 | 仿真值 | 近似值 | 偏差 | ||||
第一组 | 20 | 4.75 | 0.15 | 0.399 9 | 0.399 3 | 0.15% | 0.478 | 0.480 | 0.44% | 1 769 | 1 733 | 2.08% |
第二组 | 25 | 3 | 0.1 | 0.386 3 | 0.386 0 | 0.08% | 0.469 | 0.469 | 0% | 2 153 | 2 238 | 3.80% |
Table 5 Verification results of the approximate model
数据 | 倒锥角 θ/(°) | 球冠 半径Rn/m | 肩部倒角 半径Rc/m | 升阻比CL/CD | 容积率 | 热流密度/(kW·m-2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
仿真值 | 近似值 | 偏差 | 仿真值 | 近似值 | 偏差 | 仿真值 | 近似值 | 偏差 | ||||
第一组 | 20 | 4.75 | 0.15 | 0.399 9 | 0.399 3 | 0.15% | 0.478 | 0.480 | 0.44% | 1 769 | 1 733 | 2.08% |
第二组 | 25 | 3 | 0.1 | 0.386 3 | 0.386 0 | 0.08% | 0.469 | 0.469 | 0% | 2 153 | 2 238 | 3.80% |
优化目标 | 优化结果 | |||||
---|---|---|---|---|---|---|
倒锥角θ/(°) | 球冠半径Rn/m | 肩部倒角半径Rc/m | 升阻比CL/CD | 容积率 | 热流密度/(kW·m-2) | |
升阻比最大化 | 31 | 5 | 0.08 | 0.426 1 | 0.416 9 | 1 735 |
容积率最大化 | 15 | 2.5 | 0.08 | 0.354 1 | 0.521 3 | 2 571 |
热流最小化 | 20.90 | 5 | 0.122 9 | 0.408 2 | 0.473 2 | 1 701 |
Table 6 Results of single-objective optimization
优化目标 | 优化结果 | |||||
---|---|---|---|---|---|---|
倒锥角θ/(°) | 球冠半径Rn/m | 肩部倒角半径Rc/m | 升阻比CL/CD | 容积率 | 热流密度/(kW·m-2) | |
升阻比最大化 | 31 | 5 | 0.08 | 0.426 1 | 0.416 9 | 1 735 |
容积率最大化 | 15 | 2.5 | 0.08 | 0.354 1 | 0.521 3 | 2 571 |
热流最小化 | 20.90 | 5 | 0.122 9 | 0.408 2 | 0.473 2 | 1 701 |
优化目标 | 优化结果 | |||||
---|---|---|---|---|---|---|
倒锥角θ/(°) | 球冠半径Rn/m | 肩部倒角半径Rc/m | 升阻比CL/CD | 容积率 | 热流密度/(kW·m-2) | |
升阻比最大化 | 19.04 | 5.000 | 0.163 5 | 0.394 1 | 0.492 3 | 172 6 |
Table 7 Results of dual-objective optimization
优化目标 | 优化结果 | |||||
---|---|---|---|---|---|---|
倒锥角θ/(°) | 球冠半径Rn/m | 肩部倒角半径Rc/m | 升阻比CL/CD | 容积率 | 热流密度/(kW·m-2) | |
升阻比最大化 | 19.04 | 5.000 | 0.163 5 | 0.394 1 | 0.492 3 | 172 6 |
[1] |
杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3): 703-713.
doi: 10.7527/S1000-6893.2014.0355 |
YANG Lei, ZHANG Bainan, GUO Bin, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 703-713.
doi: 10.7527/S1000-6893.2014.0355 |
|
[2] | 唐伟, 桂业伟, 张勇, 等. 未来升力再入飞船返回舱的气动布局设计[C]. 中国宇航学会首届学术年会,北海, 2005年12月6-8日. |
TANG Wei, GUI Yewei, ZHANG Yong, et al. The aerodynamic layout design of the reentry capsule of the future lift reentry spacecraft[C]. The first annual academic conference of the Chinese Society of Astronautics, Beihai, December 6-8, 2005. | |
[3] | 唐伟, 高晓成, 李为吉, 等. 双椭圆截面再入飞行器的气动计算及布局优化设计[J]. 空气动力学学报, 2004, 22(2): 171-174. |
TANG Wei, GAO Xiaocheng, LI Weiji, et al. Aerodynamics prediction and configuration optimization for reentry vehicle with double-ellipse cross-section[J]. Acta Aerodynamica Sinica, 2004, 22(2): 171-174. | |
[4] | 唐伟, 桂业伟, 方方. 新型升力再入飞船返回舱气动外形选型研究[J]. 宇航学报, 2008, 29(1): 84-88. |
TANG Wei, GUI Yewei, FANG Fang. Aerodynamic configura-tions selection for lift reentry capsule[J]. Journal of Astronau-tics, 2008, 29(1): 84-88. | |
[5] | 车竞, 唐硕, 何开锋. 高超声速飞行器气动布局总体性能优化设计研究[J]. 空气动力学学报, 2009, 27(2): 214-219. |
CHE Jing, TANG Shuo, HE Kaifeng. Research on aerodynamic configuration optimization of integral performance for hypersonic cruise vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(2): 214-219. | |
[6] | 夏露, 高正红, 李天. 飞行器外形多目标多学科综合优化设计方法研究[J]. 空气动力学学报, 2003, 21(3): 275-281. |
XIA Luo, GAO Zhenghong, LI Tian. Investigation of integrated multi-disciplinary and multi-objective optimization of the aircraft configuration design method[J]. Acta Aerodynamica Sinica, 2003, 21(3): 275-281. | |
[7] | 邓雪梅. 实现人类重返月球的“星座”计划[J]. 世界科学, 2009(8): 7-8. |
DENG Xuemei. “Constellation” plan to realize human return to the moon[J]. World Science, 2009(8): 7-8. | |
[8] | 张蕊. 美国载人航天商业运输的发展[J]. 航天器工程, 2011, 20(6): 86-93. |
ZHANG Rui. Development of American human spaceflight commercial transportation[J]. Spacecraft Engineering, 2011, 20(6): 86-93. | |
[9] | WILLIAMS D. Commercial crew development environmental control and life support system status[C]. The 41 st International Conference on Environmental Systems, Portland, USA, July 17-21, 2011. |
[10] | DREYER L. Latest developments on SpaceX’s Falcon 1 and Falcon 9 launch vehicles and Dragon spacecraft[C]. IEEE Aerospace conference, Big Sky, USA, March 7-14, 2009. |
[11] | 陈杰. 美国“龙”飞船国际空间站对接试验简析[J]. 中国航天, 2012(8): 24-29. |
CHEN Jie. Brief analysis of docking test of American“Dragon” spacecraft to the International Space Station[J]. Aerospace China, 2012(8): 24-29. | |
[12] | MCKINNEY J, FERGUSON P, WEBER M L, et al. Initial testing of the CST-100 aerodynamic deceleration system[C]. AIAA Aerodynamic Decelerator Systems (ADS) Conference, Daytona Beach, USA, March 25-28, 2013. |
[13] | MCKINNEY J, FERGUSON P, WEBER M L, et al. Boeing CST-100 landing and recovery system design and development testing[C]. AIAA Aerodynamic Decelerator Systems (ADS) Conference, Daytona Beach, USA, March 25-28, 2013. |
[14] | ZEA L, OVER S, KLAUS D, et al. Development of a cockpit architecture for the dream chaser orbital vehicle[C]. The 42nd International Conference on Environmental Systems, San Diego, USA, July 15-19, 2012. |
[15] | HOWARD R, KREVOR Z C, MOSHER T, et al. Dream Chaser commercial crewed spacecraft overview[C]. The 17th AIAA International Space Planes and Hypersonic Systems and Tech-nologies Conference, San Francisco, USA, April 11-14, 2011. |
[16] | FRANK W. T, RUSSELL H. Dream ChaserTM for space transportation: Tourism, NASA and military integrated on an Atlas V[C]. AIAA SPACE 2008 Conference & Exposition, San Diego, USA, September 9-11, 2008. |
[17] | 阳光. 俄罗斯的新载人飞船项目: PPTS(上)[J]. 中国航天, 2011(7): 16-18. |
YANG Guang. Russia’s new manned spacecraft project—PPTS (I)[J]. Aerospace China, 2011(7): 16-18. | |
[18] | NASA. NASA’s exploration systems architecture study (Final report)[R]. Houston,USA: NASA Exploration Systems Development Mission Directorate, 2005. |
[19] |
TANG W, ORLOWSKI M, LONGO J M A, et al. Aerodynamic optimization of re-entry capsules[J]. Aerospace Science and Technology, 2001, 5(1): 15-25.
doi: 10.1016/S1270-9638(00)01085-3 URL |
[20] | ORLOWSKI M, TANG W. A system for the aerodynamic optimization of three-dimensional configurations[C]. Aerodyn-amic Design and Optimisation of Flight Vehicles in a Concurrent Multi-disciplinary Environment (RTO Conference), Ottawa, Canada, October 18-21, 1999. |
[21] |
PUTNAM Z, BRAUN R, ROHRSCHNEIDER R, et al. Entry system options for human return from the Moon and Mars[J]. Journal of Spacecraft and Rockets, 2005, 44: 194-202.
doi: 10.2514/1.20351 URL |
[22] | 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 020891. |
ZHOU Zhu, HUANG Jiangtao, HUANG Yong, et al. CFD technology in aeronautic engineering field: Applications, challe-nges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891. | |
[23] |
韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344.
doi: 10.7527/S1000-6893.2019.23344 |
HAN Zhonghua, XU Chenzhou, QIAO Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344.
doi: 10.7527/S1000-6893.2019.23344 |
|
[24] |
VIANA F A C, SIMPSON T W, BALABANOV V, et al. Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: How far have we really come?[J]. AIAA Journal, 2014, 52(4): 670-690.
doi: 10.2514/1.J052375 URL |
[25] | 赵梦熊. 小升阻比载人飞船返回舱的空气动力特性[J]. 气动实验与测量控制, 1994(4): 1-9. |
ZHAO Mengxiong. The aerodynamic characteristics of capsule type re-entry vehicle[J]. Fluid mechanics experiment and measurement, 1994(4): 1-9. |
[1] | YU Kang, WU Wenrui, SU Ling, MA Xiaobin. Architecture Research on Reusable Technologies of China’s Next-generation Manned Spacecraft [J]. Journal of Astronautics, 2023, 44(9): 1329-1336. |
[2] | TIAN Lin, WU Xinfeng, WANG Pengcheng, JING Xuzhen, ZHANG Haowei, HAO Ping, XU Ming, GONG Chunlin. Research on Design and Key Technologies of Launch Abort System for China’s Next-generation Manned Spacecraft [J]. Journal of Astronautics, 2023, 44(9): 1350-1359. |
[3] | ZHANG Hairui, WANG Hao, WANG Yao, HONG Dongpao. Uncertainty Modeling and Optimization Method for Overall Design of Flight Vehicle [J]. Journal of Astronautics, 2023, 44(4): 486-495. |
[4] | SUN Zhicheng, LI Shipeng, SONG Xiaodong, HUANG Yiyong, ZHANG Huan, YAN Mingzheng. Mechanical Analysis and Optimization Design of Pipeline for On orbit Berthing Refueling [J]. Journal of Astronautics, 2022, 43(9): 1196-1207. |
[5] |
SONG Xiang shuai, CHU Wei meng, TAN Shu jun, WU Zhi gang.
Integrated Optimization Design of Base Structure/Piezoelectric Actuator Parameters for a Grid Reflector with Actuators [J]. Journal of Astronautics, 2021, 42(2): 150-158. |
[6] | CAO Chen yu,WANG Rui xing,XING Xiao dong,SONG Hong wei,HUANG Chen guang. Design and Experimental Investigation of Integrated Thermal Protection Structure Containing Phase Change Material Layer [J]. Journal of Astronautics, 2019, 40(3): 352-361. |
[7] | YANG Wen miao, SHI Jun wei. Principle of CCL Synchronous Deployment and Dynamic Optimization of Solar Panel [J]. Journal of Astronautics, 2017, 38(4): 338-343. |
[8] | WEN Nuan, LIU Zheng hua, ZHU Ling pu, SUN Yang. Deep Reinforcement Learning and Its Application on Autonomous Shape Optimization for Morphing Aircrafts [J]. Journal of Astronautics, 2017, 38(11): 1153-1159. |
[9] | WU Hong yu, WANG Chun jie, DING Zong mao, DING Jian zhong, LIU Xue ao. Configuration Optimization of Landing Gear under Two Kinds of Landing Modes [J]. Journal of Astronautics, 2017, 38(10): 1032-1040. |
[10] | MING Chao, SUN Rui sheng, BAI Hong yang, YAN Da wei. Climb Trajectory Optimization with Multiple Constraints for Air Breathing Supersonic Missile [J]. Journal of Astronautics, 2016, 37(9): 1063-1071. |
[11] | CHEN Xiao yu, DAI Guang ming, CHEN Liang, SONG Zhi ming, WANG Mao cai. A Method for Constellation Performance Analysis Based on Spherical Subdivision [J]. Journal of Astronautics, 2016, 37(10): 1246-1254. |
[12] | LIU Qiang, WU Deng yun, HAN Bang cheng, FAN Ya hong. Optimization and Test of Magnetic Bearing Flywheel [J]. Journal of Astronautics, 2015, 36(11): 1324-1331. |
[13] | LIU Chuan zhen, DUAN Yan hui, CAI Jin sheng. Aerodynamic Shape Optimization Based on Multi Block Class and Shape Transformation [J]. Journal of Astronautics, 2014, 35(2): 137-143. |
[14] | MENG Song he, YANG Qiang, HUO Shi yu, XIE Wei hua. State of Arts and Trend of Integrated Thermal Protection Systems [J]. Journal of Astronautics, 2013, 34(10): 1295-1302. |
[15] | ZHANG Xin-gang, WU Gang, ZHONG Ying. Optimizition Design of Shaped Reflector Data Transmission Antenna on Satellite [J]. Journal of Astronautics, 2012, 33(3): 374-379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||